
Elements of the Calculus of

Variations *

Leonhard Euler

Soon after the invention of the principles of differential calculus mathe-
maticians have started to consider problems requiring a completely special
application of this calculus. For, since the main essence of differential calculus
is that, having propounded an arbitrary function of the variable quantity x,
its increment is investigated, if the quantity x is assumed to increase by the
amount of its differential dx, after a translation to Geometry it was easy to
define the tangents and curvatures of curved lines, which quantities are imme-
diately derived from the nature of differentials. Another matter is the nature of
problems, in which innumerable curved lines contained in a general equation
are propounded, from which curves equally long arcs, or such arcs which are
traveled along in the same amount of time by a body only subjected to gravity,
are to be separated, from the latter of which cases the problem of synchronous
curves originated. For, in questions of this kind it is not so important how
much the ordinate of a certain curve increases if the abscissa is increased by
its differential, but rather how the arc length or the time of descent is varied
by the differential, if the arc is taken on another curve. Such problems are
said to be resolved by differentiation of parameters, since the variability of the
parameter contains all the infinitely many propounded curves. But to see the
principles, from which the solution of problems of this kind is to be derived,
more clearly, let an arbitrary equation among the abscissa x and the ordinate
y be propounded, which we additionally want to contain the constant a to be
referred to as parameter; as long as it retains the same value, the equation will
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yield one single curved line, but if successively different values are attributed
to a, other curved lines will arise. If the question is about the arcs of these
curves, since the arc of a curve is expressed by

∫ √
dx2 + dy2, in which inte-

gration the parameter a is treated as a constant, the whole task reduces to the
definition of the increment of the integral formula

∫ √
dx2 + dy2 it receives, if

in it the quantity a + da is substituted for a. Therefore, in general, if any other
integral expression

∫
Zdx instead of the arc is considered, which integration

is to be constructed from the equation given among x and y, having treated
the parameter a as a constant, it is in question, how much of a variation the
same expression

∫
Zdx will undergo, if in the equation given among x and

y the parameter a is increased by its differential da. The famous problem of
the orthogonal trajectories is of the same nature, in which infinitely many
curved lines given by an equation among the abscissa x, the ordinate y and
the parameter a are propounded and a curved line is in question, which
intersects all those curves orthogonally. To solve this problem the ordinate y
is usually considered as a function of x and a, from whose differentiation the
form dy = pdx + qda is assumed to result; but then one gets to this differential
equation

dx(1 + pp) + pqda = 0 or to this one dx + pdy = 0,

from which in combination with the first the parameter a must be eliminated
in order to find an equation among x and y expressing the nature of the
curve in question. Whenever the curve to be intersected is given through an
algebraic equation among x and y, the task is simple, since hence the value
of y can be defined in terms of x and a absolutely and hence the values of
p and q can be assigned by differentiation, whence a differential equation
among the two variables p and q only is obtained; but if the equation for the
curves to be intersected is a differential equation involving the parameter a as
a constant quantity, which equation will therefore be of the form dy + pdx or
y =

∫
pdx, one especially has to investigate, a differential equation of which

kind would have resulted, if, except for x, also the parameter a is considered as
a variable, in order to find the quantity q from this; this investigation becomes
very difficult in most cases and hence seems to exceed the possibilities of
analysis. But even though the reasoning for this investigation is to be derived
solely from the principles of differential calculus, there is nevertheless a
huge difference in the application, since, whereas ordinary differentiation
usually is not difficult at all, here the whole difficulty resides in the invention
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of the differentials to arise from the variability of the parameter and this
invention requires own special rules. Therefore, the branches of the Analysis
of the Infinite necessarily seem to be increased, if we refer an investigation of
differentials of this kind, which result from the variability of the parameter, to
a peculiar calculus, which for the sake of distinction can be called Calculus of
Variations. The necessity for it will be seen even more clearly, if we consider
that it extends a lot further than just to the variability of the parameter; even
though by that parameter the amount of curves is multiplied to infinity, all of
them are nevertheless comprehended in a certain species, which is contained
in the given equation, of course. But our calculus of variations can not only
be extended to certain classes of curves of this kind, but even to all curves
one can think of, as, e.g., if among all curves the one is to be defined which
enjoys a certain given property of maximum or minimum. And the famous
isoperimetric problem understood in the broadest sense, as I considered it
in my book on the calculus of variations, is to be referred to this; who read
my book with attention will not doubt that investigations of this kind require
a singular calculus not very different from the usual rules of Analysis. For,
these problems are reduced to such a question, that an equation among the
two variables x and y is determined, from which a certain integral expression∫

Zdx, no matter how Z depends on x and y, obtains a maximum or minimum
value. To achieve this, having propounded an arbitrary integral formula

∫
Zdx

which obtains a determined value from the assumed relation among x and
y, it is necessary to define in general, how much of an alteration the formula
will undergo, if the relation among x and y is varied infinitely less; and this
question extends infinite times further than the above question, where only
the change to arise from the variation of the parameter had to be assigned.
But instead of this simple integral formula

∫
Zdx one can also consider any

expression composed of x, y and their differentials and integral formulas,
to extend this subject even further; even then the calculus of variations will
yield rules to define the change of expressions of this kind induced by an
infinitely small variation of the given relation among x and y. The method
usually applied for the solution of isoperimetric problems indeed already
provides us with extraordinary specimens of this calculus; but since they are
all taken from the same source, i.e. Geometry, they can not be used for the
foundation of the principles of this desired calculus. Furthermore, even these
specimens are not general enough to comprehend the girth of our calculus.
Therefore, I decided to derive its elements from the first principles of Analysis
and expand them in such a way that they can not only be applied to solve
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the above problems quickly and easily but also open a new field extending
to many other questions of this kind, in which Mathematicians can then test
their abilities while promoting the limits of Analysis tremendously.

HYPOTHESIS 1

§1 Let an arbitrary equation among the two variables x and y be given, which
also expresses their mutual relation, such that hence, whatever determined
value is attributed to x, also a determined value for y is defined.

COROLLARY 1

§2 Therefore, having propounded an equation among the two variables x
and y to all conceivable values of x determined values of y will correspond.

COROLLARY 2

§3 Therefore, via this propounded equation y will be a certain function of x
and, as y corresponds to x, so y′ = y + dy, whose difference to the preceding
value y, i.e. dy, can be assigned by the usual rules of differentiation, will
correspond to the following value x′ = x + dx.

COROLLARY 3

§4 Since y is a function of x, dy
dx will also be a function of x assignable by the

given relation among x and y; and if one puts dy
dx = p, in like manner dp

dx will
be a certain function of x; but if we further set dp

dx = q, dq
dx = r, dr

dx = s etc., even
these quantities q, r, s etc. will be certain functions of x likewise assignable by
the given relation among x and y.

COROLLARY 4

§5 Further, if V is an expression somehow composed of x and y, by the given
relation among x and y it will also be of such a nature that it has determined
values for all values of x. And if V ′ denotes the following value or the value
corresponding to x + dx, it will be V ′ = V + dV or dV = V ′ −V, according to
the first principles of differential calculus.
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HYPOTHESIS 2

§6 Whatever relation among x and y is propounded, since hence at the same
time the relation among the differentials dy and dx is known, in the following
I will always set:

dy
dx

= p,
dp
dx

= q,
dq
dx

= r,
dr
ds

= s etc.,

and p, q, r, s etc. will be functions assignable in terms of x and y.

COROLLARY 1

§7 As the letter p contains the relation of the differentials dx and dy, so q will
contain the relation of the differentials of second order, r of the differentials of
third order, s of fourth order etc.

COROLLARY 2

§8 Therefore, even vice versa, if there are differentials either of first order
or of second order or even of higher order in the expression V, they can be
thrown out by introducing these quantities p, q, r, s etc.

AXIOM

§9 If another relation among the variables x and y differing only infinitely
less from the propounded one is constituted, the values of y corresponding to
each value of x will also differ only infinitely less from those the propounded
relation yields.

COROLLARY 1

§10 Since a varied relation of this kind can differ from the propounded
relation in infinitely many ways so that the difference is infinitely small, it can
happen that one or more values of y corresponding to certain values of x do
not undergo a change.
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COROLLARY 2

§11 This so general variation of the relation can be understood that hence
all values of y undergo some changes not depending on each other. Therefore,
to be as general as possible, it will be convenient to understand the variation
of the conceived relation in this most general sense.

HYPOTHESIS 3

§12 If the propounded relation among x and y is changed infinitely less, let
us denote the value of y corresponding to x after this by y + δy, so that δy
denotes the variation y undergoes because the relation is varied.

COROLLARY 1

§13 Since in like manner y′ is the value corresponding to x + dx via the
propounded relation, let us express its value corresponding to x + dx via the
varied relation by y′ + δy′, so that δy′ denotes the variation of y′ resulting
from the variation of the relation.

COROLLARY 2

§14 Therefore, since y′ = y + dy, it will be

δy′ = δ(y + dy) = δy + δdy and δdy = δy′ − δy.

But δdy will denote the variation of dy resulting from the relation among x
and y.

COROLLARY 3

§15 But as y′ denotes the following state of y, having related the following
state to x + dx, of course, so δy′ denotes the following state of δy, whence
δy′ − δy will express the differential of δy, which is dδy. Therefore, since
δdy = δy′ − δy, it will be δdy = dδy.

COROLLARY 4

§16 Therefore, hence we derive this extraordinary property: The variation of
the differential of y is equal to the differential of the variation of y. For, δdy is
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the variation of dy, i.e. the differential of y, and dδy is the differential of δy,
i.e. the variation of y.

DEFINITION 1

§17 If V is an expression somehow conflated of x and y, having propounded
a relation among x and y, its variation, which I will indicate by δV, is the
increment the quantity V receives, if the propounded relation among x and y
is varied infinitely less.

COROLLARY 1

§18 Therefore, the differential dV is to be distinguished carefully from the
variation δV; for, the differential denotes the increment of V, if x is increased
by its element dx, while the propounded relation among x and y remains the
same; but the variation denotes the increment of V, if the relation itself is
varied while x remains the same.

COROLLARY 2

§19 Since from the variation of the propounded relation among x and y the
quantity y receives the increment δy while x remains the same: No matter
how the quantity V was conflated of x and y, its variation will be found, if
one writes y + δy instead of y everywhere and V is subtracted from the value
of V to result from that substitution.

COROLLARY 3

§20 If one writes y + δy instead of y in V everywhere, the varied value of V
will result, which is V + δV; but the variation itself is found, if the primitive
value V is subtracted from the varied value V + δV.

DEFINITION 2

§21 The calculus of variations is the method to find variations quantities
somehow conflated of the two variables x and y undergo, if the propounded
relation among x and y is changed infinitely less in some way.
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COROLLARY 1

§22 Therefore, having propounded a relation among x and y, if V denotes a
quantity somehow depending on x and y, this calculus teaches how to find
the variation of V or the value of δV.

COROLLARY 2

§23 Since we assume the given relation among x and y to be changed
somehow that y for each value of x undergoes some variations, which do
not depend on each other, this calculus extends very far and can also be
accommodated to given conditions of the variations.

SCHOLIUM 1

§24 For the calculus to be understood more clearly let us give an example.
Therefore, let this relation among x and y be propounded

aayy− bbxx = aabb,

which, writing b + db instead of b, is changed infinitely less. If now a quantity
depending on x and y is propounded, e.g.,

∫ √
dx2 + dy2
√

y
,

its variation to result from that change of the relation can be exhibited applying
this calculus; for, since

y =
b
a
√

aa− xx,

it will be
δy =

db
a
√

aa− xx,

which is the variation of y. But how from the known variation of y the
variations of quantities depending somehow on y and x and even on

∫ √
dx2 + dy2
√

y
,

have to be determined, is to be shown in this calculus; hence it is plain that
everything what has been treated in several different places by several authors
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on the variability of the parameter is contained here. Furthermore, these
questions can even be inverted, as if, e.g., having propounded a formula of
this kind ∫ √

dx2 + dy2
√

y
,

the relation among x and y is in question, whence the variation of this given
formula is of a given magnitude or even zero, in which second case the found
relation will give the maximum or minimum value of the propounded formula;
and indeed all problems, that have been considered on curves enjoying a
property of a maximum or a minimum, are to be referred to this.

SCHOLIUM 2

§25 The prescriptions of this calculus are accommodated to the diversity of
the nature, according to which the propounded formula V depends on the
two variables x and y; since the amount of these diversities is infinite, it will
be convenient to divide them into some certain classes or species. Therefore,
the first class contains the formulas which are somehow composed of the
quantities x and y and those derived from them, i.e.

p =
dy
dx

, q =
dp
dx

, r =
dq
dx

etc.,

but nevertheless in such a way that they do not involve integral formulas. To
the second class I refer the formulas containing integral formulas like

∫
Zdx,

so that Z belongs to the first class. The third class will comprehend formulas,
in which not only the integrals

∫
Zdx are contained, but also the quantity Z

involves integrals. Finally, the fourth class follows, in which the formula V to
be varied is not defined absolutely but just by a differential equation either
of first order or of second order or higher order, which class extends very
far and contains all the others as a special case. But concerning the equation
expressing the relation among x and y, even though I consider it to be given,
I nevertheless not define it to not restrict the rules to be be derived in the
following somehow.

THEOREM 1

§26 The variation of a certain quantity V is equal to the differential of the
variation of the same quantity or, in other words, δdV = dδV.
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PROOF

Since dV = V ′ −V, while V ′ denotes the following value of V, i.e. the value
corresponding to x + dx, and V corresponds to x, it will be δdV = δV ′ − δV;
but dδV expresses the difference of δV and its following value, i.e. δV ′, so that
dδV = δV ′ − δV, whence it is perspicuous that δdV = dδV.

COROLLARY 1

§27 The same way, if we write dV instead of V, it is plain that δddV = dδdV;
but δdV = dδV, whence dδdV = ddδV, and hence these three formulas will
be equal

δdV = dδdV = dδV.

COROLLARY 2

§28 Further, if we write dV instead of V in that last formula, we will obtain
an equality among these four formulas

δdddV = dδddV = ddδdV = dddδV,

but then among these five

δd4V = dδd3V = d2δd2V = d3δdV = d4δV.

COROLLARY 3

§29 If one has the differential of any order of V, i.e. dnV, whose variation is
to be investigated, it will be

δdnV = dmδdn−mV = dnδV,

of course, it will be equal to the differential of n-th order of the variation δV.
Therefore, hence the variation of differentials is reduced to the differentiation
of the variation.

PROBLEM 1

§30 To determine the variations of the quantities p, q, r, s etc. containing the ratio
of the differentials of x and y.
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SOLUTION

Since the variation does not extend to x, it will be δx = 0 and the variation of
y, i.e. δy, is considered to be known. Hence, since p = dy

dx , it will be

δp =
δdy
dx

=
dδy
dx

.

Further, since q = dp
dx , it will be

δq =
δdp
dx

=
dδp
dx

;

but for constant element dx we have dδp = ddδy
dx and hence

δq =
ddδy
dx2 and dδq =

d3δy
dx3 .

But furthermore, since r = dq
dx , it will be

δr =
δdq
dx

=
dδq
dx

and hence δr =
d3δy
dx3 ,

whence the variations of the quantities derived from x and y, i.e. p, q, r, s etc.,
will look as follows

δp =
dδy
dx

, δq =
d2δy
dx2 , δr =

d3δy
dx3 , δs =

d4δy
dx4 etc.,

if the element dx is assumed to be constant, of course.

COROLLARY 1

§31 These differentials of first and higher orders of the variation δy are
determined by the variations of the values of y corresponding to the following
values of x, i.e. x + dx, x + 2x, x + 3dx etc. For, if the following values of y are
exhibited this way: y′, y′′, y′′′, y′′′′ etc. and their variations this way: δy′, δy′′,
δy′′′, δy′′′′, we know from the nature of differentials that

dδy = δy′ − δy,

ddδy = δy′′ − 2δy′ + δy,

d3δy = δy′′′ − 3δy′′ + 3δy′ − δy
etc.
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COROLLARY 2

§32 Therefore, if only the value y is subjected to the variation, but the
following ones y′, y′′, y′′′ etc. are not, that δy′ = 0, δy′′ = 0, δy′′′ = 0 etc., it
will be

dδy = −δy, ddδy = +δy, d3δy = −δy, , d4δy = +δy etc.

and hence

δp = − δy
dx

, δq = +
δy
dx2 , δr = − δy

dx3 , δs = +
δy
dx4 etc.

PROBLEM 2

§33 If V was a quantity somehow conflated of the variables x and y and their
differentials of any order or if it was an arbitrary function of the quantities x, y, p, q,
r, s etc., to determine its variation δV.

SOLUTION

Differentiate the function V as usual and let this expression result

dV = Mdx + Ndy + Pdp + Qdq + Pdr + Sds + etc.,

which differential is nothing else but the increment the function V receives, if
the quantities x + dx, y + dy, p + dp, q + dq, r + dr etc. are substituted for x,
y, p, q, s etc. In like manner, if for x, y, p, q, s etc. these are substituted

x + 0, y + δy, p + δp, q + δq, r + δr, s + δs etc.,

the increment the function V receives from this will be its variation

δV = Nδy + Pδp + Qδq + Rδr + Sδs + etc.

Hence, if the values found above are for δp, δq, δr etc. are written here, the
variation in question will result as

δV = Nδy +
Pdδy

dx
+

Qddδy
dx2 +

Rd3δy
dx3 +

Sd4δy
dx4 + etc.
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THEOREM 2

§34 Having propounded an arbitrary integral formula Zdx, its variation will
be equal to the integral of the variation of the differential Zdx or it will be

δ
∫

Zdx =
∫

δZdx.

PROOF

Since
∫

Zdx expresses the sum of all Zdx, its variation δ
∫

Zdx will compre-
hend the sum of all variations of Zdx or it will be δ

∫
Zdx =

∫
δZdx. This

can also shown more detailed this way: Let
∫

Zdx = V so that one has to
determine δV; therefore, since dV = Zdx, it will be δdV = δZdx = dδV,
whence, having taken the integrals, it will be δV =

∫
δZdx.

PROBLEM 3

§35 Having propounded the integral formula
∫

Zdx, in which Z is a quantity
somehow conflated of x and y and their differentials of any order, to investigate its
variation δ

∫
Zdx.

SOLUTION

Therefore, since Z is a function of x, y, p, q, r, s etc., its differential taken as
usual will have a form of this kind

dZ = Mdx + Ndy + Pdp + Qdq + Rdr + Sds + etc.,

whence the variation of the same quantity Z will be

δZ = Nδy +
Pdδy

dx
+

Qddδy
dx2 +

Rd3δy
dx3 +

Sd4δy
dx4 + etc.

Since δ
∫

Zdx =
∫

δZdx, it will be

δ
∫

Zdx =
∫

Nδydx +
∫

Pdδy +
∫ Qddδy

dx
+
∫ Rd3δy

dx2 + etc.;
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for the expression δy not to disturb in the further reduction, let us put δy = w,
and the reductions will look as follows∫

Pdw = Pw−
∫

wdP,∫ Qddw
dx

=
Qdw
dx
−
∫ dQ

dx
dw =

Qdw
dx
− wdQ

dx
+
∫ wddQ

dx
,∫ Rd3w

dx2 =
Rddw
dx2 −

dRdω

dx2 +
wddR

dx2 −
∫ wd3R

dx2

etc.

Collect all these values and substitute δy for w again, and this way one will
obtain

δ
∫

Zdx =
∫

δydx
(

N − dP
dx

+
ddQ
dx2 −

d3R
dx3 +

d4S
dx4 − etc.

)
+ δy

(
P − dQ

dx
+

ddR
dx2 −

d3S
dx3 + etc.

)
+

dδy
dx

(
Q − dR

dx
+

ddS
dx2 − etc.

)
+

ddδy
dx2

(
R − dS

dx
+ etc.

)
+

d3δy
dx3

(
S − etc.

)
+ etc.,

in which expression the differential dx was assumed to be constant.

COROLLARY 1

§36 Therefore, the variation of the integral formula
∫

Zdx consists of the
integral part ∫

δydx
(

N − dP
dx

+
ddQ
dx2 −

d3R
dx3 +

d4S
dx4 − etc.

)
and absolute parts, which except for the variation δy also contain its differen-
tials dδy, ddδy, d3δy etc.

14



COROLLARY 2

§37 But we set up the integral part by the used reductions in such a way
that it only contains the variation δy and is exhibited without its differentials,
which form is of greatest use in the application of the calculus of variations.

PROBLEM 4

§38 If in the integral formula
∫

Zdx the quantity Z does not only contain the letters
x and y with the relations of the differentials p, q, r, s etc., but also contains the
integral formula Π =

∫
Zdx somehow, in which Z is a function of x, y, p, q, r, s etc.,

to define the variation of the integral formula
∫

Zdx.

SOLUTION

Since the quantity Z except for the quantities x, y, p, q, r, s etc. also involves
the integral formula Π =

∫
Zdx, it can be considered as a function of the

quantities Π, x, y, p, q, r, s etc., whence, if it is differentiated in usual manner,
this form will result

dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + Sdsetc.,

whence the variation of Z is concluded to be

δZ = LδΠ + Nδy + Pδp + Qδq + Rδr + Sδs + etc.

Further, since Z is a function of x, y, p, q, r, s etc., put

dZ = Mdx +Ndy +Pdp +Qdq +Rdr +Sds + etc.,
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and from the preceding problem δΠ will be

δ
∫

Zdx =
∫

δydx
(
N− dP

dx
+

ddQ
dx2 −

d3R

dx3 +
d4S

dx4 − etc.
)

+ δy
(
P− dQ

dx
+

ddR
dx2 −

d3S

dx3 + etc.
)

+
dδy
dx

(
Q− dR

dx
+

ddS
dx2 − etc.

)
+

ddδy
dx2

(
R− dS

dx
+ etc.

)
+

d3δy
dx3

(
S− etc.

)
+ etc.

Or rather take the first form

δ
∫

Zdx =
∫

Nδydx +
∫

Pdδy +
∫

Qddδy
dx

+
∫

Rd3δy
dx2 +

∫
Sd4δy

dx3 + etc.,

and, because of δΠ = δ
∫
Zdx, it will be

δZ = L
∫

Nδydx + L
∫

Pdδy + L
∫

Qddδy
dx

+ L
∫

Rd3δy
dx2 + L

∫
Sd4δy

dx3 + etc.

+Nδy +
Pdδy

dx
+

Qddδy
dx2 +

Rd3δy
dx3 +

Sd4δy
dx4 + etc.

Therefore, since δ
∫

Zdx =
∫

δZdx, we will have

δ
∫

Zdx =
∫

Ldx
∫

Nδydx +
∫

Ldx
∫

Pdδy

+
∫

Ldx
∫

Qddδy
dx

+
∫

Ldx
∫

Rd3δy
dx2 + etc.

+
∫

Nδydx +
∫

Pdδy +
∫ Qddδy

dx
+
∫ Rd3δy

dx2 + etc.

Put
∫

Ldx = W, or Ldx = dW, and, because of∫
Ldx

∫
Nδydx = W

∫
Nδyδx−

∫
NWδydx,∫

Ldx
∫

Pdδy = W
∫

Pdδy−
∫

PWdδy,∫
Ldx

∫
Qddδy

dx
= W

∫
Qddδy

dx
−
∫

QWddδy
dx

,
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we will obtain:

δ
∫

Zdx = W
∫

Nδydx + W
∫

Pdδy + W
∫

Qddδy
dx

+ W
∫

Nd3δy
dx2 + etc.

+
∫
(N −NW)δydx +

∫
(P−PW)dδy

+
∫
(Q−QW)

ddδy
dx

+
∫
(R−RW)

d3δy
dx2 + etc.

These formulas, reduced the same way as above, will give

δ
∫

Zdx

= W
∫

δydx
(
N− dP

dx
+

ddQ
dx2 −

d3R

dx3 + etc.
)

+ Wδy
(
P− dQ

dx
+

ddR
dx2 − etc.

)
+

Wdδy
dx

(
Q− dR

dx
+ etc.

)
+

Wddδy
dx2 (R− etc.)

+
∫

δydx
(
(N −NW)− d(P−PW)

dx
+

dd(Q−QW)

dx2 − d3(R−RW)

dx3 + etc.
)

+ δy
(
(P−PW)− d(Q−QW)

dx
+

dd(R−RW)

dx2 − etc.
)

+
dδy
dx

(
(Q−QW)− d(R−RW)

dx
+ etc.

)
+

ddδy
dx2 ((R−RW)− etc.)

+ etc.

COROLLARY 1

§39 Since the applied reductions can easily be done in each case, having
mentioned them in advance, having put W =

∫
Ldx, the variation in question
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can exhibited more succinctly this way

δ
∫

Zdx = W
∫

dx
(
Nδy +

Pdδy
dx

+
Qddδy

dx2 +
Rd3δy

dx3 + etc.
)

+
∫

dx
(
(N −NW)δy + (P−PW)

dδy
dx

+(Q−QW)
ddδy
dx2 + (R−RW)

d3δy
dx3 + etc.

)
.

COROLLARY 2

§40 And if the quantity Z additionally involves another integral formula
Π′ =

∫
Zdx, so that

dZ = LdΠ + L′dΠ′ + Mdx + Ndy + Pdp + Qdq + etc.,

but then
dZ′ = M′dx +N′dy +P′dp +Q′dq +R′dr + etc.,

if one puts
∫

Ldx = W,
∫

L′dx = W ′ and additionally, for the sake of brevity:

N −NW −N′W ′ = (N); P −PW −P′W ′ = (P),

Q −QW −Q′W ′ = (Q); R−RW −R′W ′ = (R)etc.,

the variation in question will be:

δ
∫

Zdx = W
∫

dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 +R

d3δy
dx3 + etc.

)
+ W ′

∫
dx
(
N′δy +P′

dδy
dx

+Q′
ddδy
dx2 +R′

d3δy
dx3 + etc.

)
+
∫

dx
(
(N)δy + (P)

dδy
dx

+ (Q)
ddδy
dx2 + (R)

d3δy
dx3 + etc.

)
.

PROBLEM 5

§41 If in the formula
∫

Zdx the quantity Z, aside from the letters x, y, p, q, r etc.
also involves the integral formula Π =

∫
Zdx, in which the quantity Z, aside from

the letters x, y, p, q, r etc., additionally contains the integral formula π =
∫
zdx,

where z is a function only of the letters x, y, p, q, r etc., to find the variation of the
formula

∫
Zdx.
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SOLUTION

Since Z is a function of the quantities x, y, p, q, r, s etc. and Π =
∫
Zdx, its

differential taken in usual manner will be of this form

dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

and hence the variation

δZ = LδΠ + Nδy + P
dδy
dx

+ Q
ddδy
dx2 + R

d3δy
dx3 + etc.,

whence the variation in question will be

δ
∫

Zdx =
∫

δZdx

=
∫

LdxδΠ +
∫

dx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + R

d3δy
dx3 + etc.

)
.

But since Z is a function of the quantities x, y, p, q, r etc. and π =
∫
zdx, by

differentiation it will be

dZ = Ldπ +Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

and hence its variation

δZ = Lδπ +Nδy +P
dδy
dx

+Q
ddδy
dx2 +R

d3δy
dx3 + etc.,

whence, since Π =
∫
Zdx, it will be δΠ = δ

∫
Zdx =

∫
δZdx and therefore

δΠ =
∫

Ldxδπ +
∫

dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 +R

d3δy
dx3 + etc.

)
,

whence one finds∫
LdxδΠ =

∫
Ldx

∫
Ldxδπ +

∫
Ldx

∫
dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
.

Therefore, it remains to define δπ; but π =
∫
zdx, and since z is a function of

the letters x, y, p, q, r, s etc., by differentiation let:

dz = mdx + ndy + pdp + qdq + rdr + etc.,
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whence the variation is concluded to be:

δz = nδy + p
dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.,

but then, because of δπ = δ
∫
zdx =

∫
δzdx, it will be

δπ =
∫

dx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.

)
.

Therefore, we will have∫
Ldx

∫
Ldxδπ =

∫
Ldx

∫
Ldx

∫
dx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.

)
.

Now to liberate this formula from the multiple integral signs, let us put∫
Ldx = W and it will be:∫

LdxδΠ = WδΠ−
∫

WdδΠ,

but dδΠ = δZdx, whence∫
LdxδΠ = WδΠ−

∫
WδZdx

and hence:∫
LdxδΠ = W

∫
Ldxδπ + W

∫
dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
−
∫

LWdxδπ −
∫

Wdx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
.

Let
∫
Ldx = W, it will be∫

Ldxδπ = Wδπ −
∫

Wδzdx

and hence:∫
Ldxδπ = W

∫
dx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.

)
−
∫

Wdx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.

)
.
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Further, put
∫
LWdx =

∫
WdW = V so that:

∫
LWdxδπ = V

∫
dx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 + etc.

)
−
∫

Vdx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + r

d3δy
dx3 +

)
.

From all these the variation in question, i.e. δ
∫

Zdx, will be concluded to be:

= (WW−V)
∫

dx
(
nδy + p

dδy
dx

+ q
ddδy
dx2 + etc.

)

−W
∫
Wdx

(
nδy + p

dδy
dx

+ q
ddδy
dx2 + etc.

)

+
∫
Vdx

(
nδy + p

dδy
dx

+ q
ddδy
dx2 + etc.

)

+W
∫

dx
(
Nδy + P

dδy
dx

+ Q
ddδy
dx2 + etc.

)

−
∫

Wdx
(
Nδy + P

dδy
dx

+ Q
ddδy
dx2 + etc.

)

+
∫

dx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

)
.

COROLLARY 1

§42 If the variation of the formula
∫

Zdx extended from x = 0 to the value
x = a is in question, take the integrals W =

∫
Ldx, M =

∫
Ldx and V =∫

WdM, so that they vanish for x = 0, but then for x = a let W = A, M = A

and V = B, which values can be written in the found formula for the letters
W, M and V, where they appear not under the integral sign.
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COROLLARY 2

§43 Therefore, for the sake of brevity put:

N + (A−W)N+ (AA−B− AW+V)n = (N),

P + (A−W)P+ (AA−B− AW+V)p = (P),

Q + (A−W)Q+ (AA−B− AW+V)q = (Q),

R + (A−W)R+ (AA−B− AW+V)r = (R)
etc.

and the variation in question of the formula
∫

Zdx extended to the value
x = a will be:∫

dx
(
(N)δy + (P)

dδy
dx

+ (Q)
ddδy
dx2 + (R)

d3δy
dx3 + etc.

)
.

COROLLARY 3

§44 But if the above reductions are used here, one will find the same variation
expressed this way:

δ
∫

Zdx =
∫

dxδy
(
(N)− d(P)

dx
+

dd(Q)

dx2 −
d3(R)

dx3 + etc.
)

+ δy
(
(P) − d(Q)

dx
+

dd(R)
dx2 − etc.

)
+

dδy
dx

(
(Q) − d(R)

dx
+ etc.

)
+

ddδy
dx2 ((R) − etc.)

+ etc.

COROLLARY 4

§45 Since B =
∫

WdW, it will be AW−V =
∫
(A−W)Ldx; hence, if one

puts the integral
∫
(A−W)Ldx = X, taken in such a way that it vanishes for

x = 0, but then becomes X = B for x = a, so that:∫
Ldx = W, and for x = a we have W = A,∫

(A−W)Ldx = X, and for x = a we have X = B ,
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the above values exhibited in corollary 2 will be as follows:

N + (A−W)N+ (B− X)n = (N),

P + (A−W)P+ (B− X)p = (P),

Q + (A−W)Q+ (B− X)q = (Q),

R + (A−W)R+ (B− X)r = (R)
etc.

PROBLEM 6

§46 If in the integral formula Φ =
∫

Zdx the quantity, aside from the letters x,
y, p, q, r etc., also contains the integral formula Φ itself, to determine the variation
δΦ = δ

∫
Zdx.

SOLUTION

Since Z is a function of the quantities x, y, p, q, r etc. and additionally involves
the integral formula Φ =

∫
Zdx, differentiate in usual manner and let this

expression result

dZ = LdΦ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.

Therefore, the variation of Z will obviously be

δZ = LδΦ + Nδy + P
dδy
dx

+ Q
ddδy
dx2 + R

d3δy
dx3 + etc.,

and hence, because of δΦ = δ
∫

Zdx =
∫

δZdx,

δΦ =
∫

LdxδΦ +
∫

dx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + R

d3δy
dx3 + etc.

)
.

Let us put δΦ = z, since this is that itself what is in question, and for the sake
of brevity also put∫

dx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

)
= u,

so that one has z =
∫

Lzdx + u and by differentiating dz = Lzdx + du, and it
will be

z = e
∫

Ldx
∫

e−
∫

Ldxdu;
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for the sake of brevity set
∫

Ldx = W and one has the variation in question

δ
∫

Zdx = eW
∫

e−Wdx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

)
.

If the variation up to a given limit x = a is desired and then W = A, for the
sake of brevity put

eA−W N = (N), eA−W P = (P), eA−W Q = (Q) etc.,

and, by the reductions given above, it will be

δ
∫

Zdx =
∫

dxδy
(
(N)− d(P)

dx
+

dd(Q)

dx2 −
d3(R)

dx3 + etc.
)

+ δy
(
(P) − d(Q)

dx
+

dd(R)
dx2 − etc.

)
+

dδy
dx

(
(Q) − d(R)

dx
+ etc.

)
+

ddδy
dx2

(
(R) − etc.

)
+ etc.

COROLLARY

§47 Therefore, if the quantity Φ to be varied is defined by the differential
equation dΦ = Zdx, in which Z somehow involves the quantity Φ and
additionally the letters x, y, p, q, r etc., its variation δΦ can be assigned by the
result of this problem.

PROBLEM 7

§48 If in the integral formula Φ =
∫

Zdx the quantity Z, aside from the letters
x, y, p, q, r etc., does not only involve the quantity Φ but additionally even another
integral formula Π =

∫
Zdx somehow, in which the quantity Z is only given by the

letters x, y, p, q, r etc., to investigate the variation δΦ = δ
∫

Zdx =
∫

δZdx.
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SOLUTION

Since Z is a function of the quantities x, p, q, r etc. and additionally of the
quantities Φ =

∫
Zdx and Π =

∫
Zdx, let this expression result by differentia-

tion
dZ = KdΦ + LdΠ + Mdx + Ndy + Pdp + Qdq + etc.,

whence the variation will be

δZ = KδΦ + LδΠ + Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

Further, since Z is a function of the letters x, y, p, q, r etc. only, put

dZ = Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

and, because of δΠ =
∫

δZdx, it will be

δΠ =
∫

dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 +N

d3δy
dx3 + etc.

)
.

As before set

δΦ = z and LδΠ + Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc. = u;

because of δΦ =
∫

δZdx = z it will be δZ = dz
dx and hence dz

dx = Kz + u;
therefore, it results

z = e
∫

Kdx
∫

e−
∫

Kdxudx = δΦ;

let
∫

Kdx = V and it will be

e−
∫

Kdxudx = e−V Ldx
∫

dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
+ e−Vdx

(
Nδy + P

dδy
dx

+ Q
ddδy
dx2 + etc.

)
,

further, put
∫

e−V Ldx = W, and by integration the variation in question will
be

δΦ = eVW
∫

dx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
− eV

∫
Wdx

(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
+ eV

∫
e−Vdx

(
Nδy + P

dδy
dx

+ Q
ddδy
dx2 + etc.

)
.
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If the variation up to a given limit x = a is desired and for x = a we have
V = A and W = B, then, for the sake of brevity, set:

eA−V N + eA(B−W)N = (N),

eA−V P + eA(B−W)P = (P),

eA−VQ + eA(B−W)Q = (Q),

eA−V R + eA(B−W)R = (R)
etc.,

having done which the variation of the formula Φ =
∫

Zdx extended up to
the limit x = a is:

δΦ =
∫

dxδy
(
(N)− d(P)

dx
+

dd(Q)

dx2 −
d3(R)

dx3 + etc.
)

+ δy
(
(P) − d(Q)

dx
+

dd(R)
dx2 − etc.

)
+

dδy
dx

(
(Q) − d(R)

dx
+ etc.

)
+

ddδy
dx2

(
(R) − etc.

)
COROLLARY

§49 Therefore, this way the variation of the quantity Φ given by the differen-
tial equation dΦ = Zdx is defined, in which Z, aside from the letters x, y, p, q,
r etc., does not only contain Φ itself, but also involves the integral formula∫
Zdx = Π somehow, as long as Z is determined by the letters x, y, p, q, r etc.

only.

PROBLEM 8

§50 If in the integral formula Φ =
∫

Zdx the quantity Z, aside from the letters
x, y, p, q, r etc., involves the integral formula Π =

∫
Zdx, but there the quantity Z,

aside from the letters x, y, p, q, r etc., contains the integral formula Π =
∫
Zdx, to

define the variation of the propounded formula Φ =
∫

Zdx.
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SOLUTION

Since Z is a function of the quantities x, y, p, q, r and of Π =
∫
Zdx, its

differential will be of this form:

dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

hence the variation will be

δZ = LδΠ + Nδy + P
dδy
dx

+ Q
ddδy
dx2 + R

d3δy
dx3 + etc.,

whence, because of δΦ =
∫

δZdx, one will have:

δΦ =
∫

LdxδΠ +
∫

dx
(

Nδy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

)
.

But since Z is a function of x, y, p, q, r etc. and Π =
∫
Zdx, let its differential

be:
dZ = LdΠ +Mdx +Ndy +Pdp +Qdq + etc.,

and it will be

dZ =
dδΠ
dx

= LδΠ +Nδy +P
dδy
dx

+Q
ddδy
dx2 + etc.

Put
∫
Ldx = W, and it will be:

δΠ = eW
∫

e−Wdx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
.

Let
∫

eWLdx = W and one will obtain:

δΦ = W
∫

e−Wdx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
−
∫

e−WWdx
(
Nδy +P

dδy
dx

+Q
ddδy
dx2 + etc.

)
+
∫

dx
(

Ndy + P
dδy
dx

+ Q
ddδy
dx2 + etc.

)
.

If this variation is to be extended up to the limit x = a and for x = a we have
W = A, for the sake of brevity call

N + e−W(A−W)N = (N),

P + e−W(A−W)P = (P),

Q + e−W(A−W)Q = (Q)
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etc.,

and, introducing the reductions given above, the variation of the integral
formula Φ =

∫
Zdx extended up to the limit x = a will be

δ
∫

Zdx =
∫

dxδy
(
(N)− d(P)

dx
+

dd(Q)

dx2 −
d3(R)

dx3 + etc.
)

+ δy
(
(P) − d(Q)

dx
+

dd(R)
dx2 − etc.

)
+

dδy
dx

(
(Q) − d(R)

dx
+ etc.

)
+

ddδy
dx2

(
(R) − etc.

)
etc.

SCHOLIUM

§51 The use of this problem will be seen considering bodies descending
along curves in an arbitrary resisting medium, while the body is acted upon
by arbitrary forces, if we want to define the variation of the time of the descent,
while the curve is varied arbitrarily. In this case let Φ denote the time of the
descent along the arc corresponding to the abscissa x and let the ordinate be
y and Π the altitude due to the acquired velocity; and the time of descent will
be

Φ =
∫ dx

√
1 + pp√
Π

,

having put dy = pdx, so that dx
√

1 + pp denotes the line element. But from
the action on the body it will be

dΠ = Xdx + Ydy−V
√

dx2 + dy2,

where X and Y denotes functions of x and y, and V a function of Π propor-
tional to the resistance. Therefore, because of dy = pdx, it will be

Π =
∫
(X + Yp−V

√
1 + pp)dx

and hence
Z = X + Yp−V

√
1 + pp,

while Z =

√
1+pp√

Π
.
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COROLLARY

§52 If, for the sake of uniformity, one puts

M + e−W(A−W)W = (M),

(M)dx + (N)dy + (P)dp + (Q)dq + (R)dr + etc. will be the true differential of
this formula:

Z + e−W(A−W)Z.

CONCLUSION

§53 Therefore, whatever integral formula Φ =
∫

Zdx is propounded, whose
variation is to be investigated, its variation extended up to the limit x = a will
be expressed this way

δΦ =
∫

dxδy
(
(N)− d(P)

dx
+

dd(Q)

dx2 −
d3(R)

dx3 +
d4(S)
dx4 − etc.

)
+ δy

(
(P) − d(Q)

dx
+

dd(R)
dx2 − d3(S)

dx3 + etc.
)

+
dδy
dx

(
(Q) − d(R)

dx
+

dd(S)
dx2 − etc.

)
+

ddδy
dx2

(
(R) − d(S)

dx
+ etc.

)
+

d3δy
dx3

(
(S) − etc.

)
+ etc.,

having assumed the element dx to be constant. But how the letters (N), (P),
(Q), (R), (S) etc. look, will become clear in each case.

CASE I

§54 If dZ = Mdx + Ndy + Pdp + Qdq + Rdr + Sds + etc., it will be

(N) = N, (P) = P, (Q) = Q, (R) = R, (S) = S etc.
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CASE II

§55 If dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc., while Π =
∫
Zdx

and
dZ = Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

let
∫

Ldx = W and for x = a let W = A, whence:

(N) = N + (A−W)N (P) = P + (A−W)P

(Q) = Q + (A−W)Q (R) = R + (A−W)R

(S) = S + (A−W)S etc.

CASE III

§56 If it was

dZ = LdΠ + L′dΠ′ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

while Π =
∫
Zdx and Π′ =

∫
Z′dx, but then

dZ = Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

dZ′ = M′dx +N′dy +P′dp +Q′dq +R′dr + etc.,

put
∫

Ldx = W and
∫

L′dx = W ′, and for x = a let W = A and W ′ = A′,
having done which it will be:

(N) = N+(A−W)N+(A′ −W ′)N′

(P) = P +(A−W)P+(A′ −W ′)P′

(Q) = Q+(A−W)Q+(A′ −W ′)Q′

(R) = R+(A−W)R+(A′ −W ′)R′

etc.

CASE IV

§57 If Z contains the integral formula Π =
∫
Zdx, so that

dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

the quantity Z on the other hand contains π =
∫
zdx that:

dZ = Ldπ +Mdx +Ndy +Pdp +Qdq +Rdr + etc.,
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but z does not involve any further integral so that:

dz = mdx + ndy + pdp + qdq + rdr + etc.,

put
∫

Ldx = W and for x = a let W = A; but then put
∫
(A−W)Ldx = W

and for x = a let W = A, having done which it will be:

(N) = N + (A−W)N+ (A−W)n,

(P) = P + (A−W)P+ (A−W)p,

(Q) = Q + (A−W)Q+ (A−W)q,

(R) = N + (A−W)R+ (A−W)r
etc.

CASE V

§58 Since Z contains the formula Φ =
∫

Zdx itself so that

dZ = KdΦ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

put
∫

Kdx = V and for x = a let V = C; it will be:

(N) = eC−V N, (P) = eC−V P, (Q) = eC−VQ, (R) = eC−V R etc.

CASE VI

§59 If Z, aside from the formula Φ =
∫

Zdx, contains another integral
formula Π =

∫
Zdx and:

dZ = KdΦ + LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

but Z does not contain another integral formula:

dZ = Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

let
∫

Kdx = V and for x = a let V = C. Furthermore, let
∫

eC−V Ldx = W and
for x = a let W = A, and it will be

(N) = eC−V N + (A−W)N,

(P) = eC−V P + (A−W)P,

(Q) = eC−VQ + (A−W)Q,

(R) = eC−V R + (A−W)R
etc.
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CASE VII

§60 If Z contains the integral formula Π =
∫
Zdx that:

dZ = LdΠ + Mdx + Ndy + Pdp + Qdq + Rdr + etc.,

but then Z involves the same formula Π =
∫
Zdx again that:

dZ = LdΠ +Mdx +Ndy +Pdp +Qdq +Rdr + etc.,

put
∫
Ldx = W and for x = a put W = A; furthermore, let∫

e−A+WLdx = W

and for x = a let W = A, and it will be:

(N) = N − eA−W(A−W)N,

(P) = P − eA−W(A−W)P,

(Q) = Q − eA−W(A−W)Q,

(R) = R − eA−W(A−W)R
etc.

§61 In like manner this investigation can be extended to other complicated
formulas, but since those do usually not occur, the effort would be superfluous.
Therefore, since I taught how to the define the variations both of simple and
more complicated integral formulas, the calculus of variations seems to be
worked out almost completely; for, of whatever nature the quantity to be
varied was, no matter whether conflated of absolute formulas or integral
formulas, its variation can be found by ordinary differentiation. As if, e.g., the
quantity to varied U contains some integral formulas like

Φ =
∫

Zdx, Φ′ =
∫

Z′dx, Φ′′ =
∫

Z′′dx etc.,

differentiate it in usual manner an let this expression result:

δU = KdΦ + K′dΦ′ + K′′dΦ′′ etc.,

then, it is evident that its variation will be:

δU = KδΦ + K′δΦ′ + K′′δΦ′′ + etc.,

32



but the variations δΦ, δΦ′, δΦ′′ etc. will be assigned using the prescriptions
just explained. But at the same time it is plain that the variation δU will always
be expressed in a form of such a kind that

δV =
∫
(A)dxδy + (B)δy + (C)

dδy
dx

+ (D)
ddδy
dx2 + etc.,

where (A), (B), (C) etc. are functions to be found from the rules given above.
But it will be convenient to display the utility of this calculus of variations
briefly in the solution of the famous isoperimetric problem understood in the
broadest sense.

APPLICATION OF THE CALCULUS OF VARIATIONS TO THE

SOLUTION OF THE ISOPERIMETRIC PROBLEM

UNDERSTOOD IN THE BROADEST SENSE

§62 The primary problem extending to this can be formulated in such a way
that among all curves to be constructed over the same given base x = a the
one is defined, for which a certain formula U has a maximum or minimum
value. For, even though the formulation of the problem only contains the
length of the curve, this condition is nevertheless conveniently omitted for
the problem to extend further and even the mentioning of the single formula
U, whose value has to become maximal or minimal, is not to be considered
to restrict it, after I had demonstrated in general: If among all curves to be
constructed over the same base x = a, for which curves the formula V has the
same value, the one curve must be defined, in which the value of the formula
U becomes maximal or minimal, the question is reduced to this that among
completely all curves to be constructed over the base x = a the one is defined,
for which this composited formula αV + βU has the maximum or minimum
value. Nevertheless, even the reason for this reduction can be explained nicely
from the principles of this calculus of variations.

§63 But this question can be propounded this way abstracted from the
consideration of curved lines:

Having propounded an arbitrary formula U, to define the relation among two variables
x and y, if by which the value of U is determined and it is extended from x = 0 to
x = a, so that the maximum or minimum value for that U results.
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Therefore, let us consider the relation among x and y as found already, so that
hence the maximum or minimum value of U results, and it is obvious, if the
relation among x and y is varied just a little, that hence no variation on the
value of U results; or, what is the same, the variation of U or δU must become
equal to zero; and so the equation δU = 0 contains the relation among x and
y in question.

§64 But we taught how to define the variation δU by assuming that for each
value of x the value of y, which corresponds to that x via the given relation, is
increased by δy. Therefore, since the relation in question among all possible
ones must enjoy these prerogatives, the variation δU must always be equal to
zero, no matter how the values of y are increased by those particular δy and
no matter of what nature these increasings were, since they are completely
arbitrary and do not depend on each other. And it is not even necessary to
attribute variations to all values of y, but no matter whether either just a single
or two or arbitrarily many values are varied, it is always necessary that the
variation, which hence follows for the complete value of U, if it is extended
from x = 0 to x = a, becomes equal to zero.

§65 But from the results derived above it is obvious that the variation of U
is always expressed as this:

δU =
∫
(A)dxδy + (B)δy + (C)

dδy
dx

+ (D)
ddδy
dx2 + etc.,

each part of which form have to be considered separately. But aside from
the first integral term the remaining parts (B)δy, (C) dδy

dx etc. only depend on
the variation of the last value y, which corresponds to x = a, and do not
involve the nature of the preceding variations; for, to obtain the complete
variation of U, one has to put x = a in the found expression, what can actually
be done in each part except in the the first, and so in these δy will denote
the variation, which is attributed to the last value of y alone and which is
completely arbitrary and does not depend on the preceding ones. Hence, even
if there would be no integral term, it is perspicuous that from the remaining
parts nothing concerning the relation among x and y could be concluded.

§66 But the integral term
∫
(A)dxδy even involves the variations attributed

to all the preceding values of y, since it contains the sum of all elements
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(A)dxδy to result from the variation of each value of y. Therefore, if one value
corresponding to x, considered to have a determined value, is varied and is
increased by δy, that integral term would only be = (A)dxδy and there would
not be anything to be summed; but if additionally the following value y′

corresponding to x + dx is increased by δy′ and, having written x + dx instead
of x, the function (A) goes over into (A)′, the integral term will consist of
these two parts

(A)dxδy + (A)′dxδy′.

In like manner, if three or more successive values y, y′, y′′, y′′′, y′′′′ etc. are
increased by δy, δy′, δy′′, δy′′′ etc., the integral term will become equal to this
expression:

(A)dxδy + (A)′dxδy′ + (A)′′dxδy′′ + (A)′′′dxδy′′′ + etc.,

which series can be imagined continued both backwards to the limit x = 0 as
forwards to the limit x = a.

§67 Therefore, even though the variation δU is restricted to the specific value
x = a, nevertheless, because of the integral term, it contains all intermediate
variations; hence, if for the absolute parts, which are only related to the
last term x = a, for the sake of brevity we write I, the variation δU will be
expressed as follows:

δU = (A)dxδy + (A)′dxδy + (A)′′dxδy′′ + (A)′′′dxδy′′′ + etc. + I,

which, in order to satisfy the problem, must become equal to zero. But since
the variations δy′, δy′′, δy′′′ etc. do not depend on each other, but each one is
arbitrary, that annihilation is only possible if each part vanishes separately,
whence is has to be

(A) = 0, (A)′ = 0, (A)′′ = 0, (A)′′′ = 0etc.,

which equations are all contained in the indefinite one (A) = 0 or, whatever
value is attributed to x, it always has to be (A) = 0, and this equation contains
the relation among x and y in question.

§68 Lo and behold the simple solution of the propounded problem, in
which the relation among x and y is required, from which for the prescribed
formula U, after its value had been extend from x = 0 to x = a, a maximum
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or minimum value results. Of course, find the variation of the formula U,
likewise extended from the limit x = 0 to x = a, which according to the rules
given above must have a form of this kind:

δU =
∫
(A)dxδy + (B)δy + (C)

dδy
dx

+ (D)
ddδy
dx2 + etc.,

and hence from the integral term
∫
(A)dxδy alone the relation among x and

y will be defined in such a way that (A) = 0, but the remaining parts, since
they only affect the last value of y, do not contribute anything to the indefinite
relation among x and y, which is desired.

§69 Nevertheless, these last parts can serve to obtain a more precise definition
of the found relation; for, parts of this kind only enter additionally, if in the
integral term

∫
(A)dxδy the function (A) involves the ratio of the differentials

dy
dx = p or even the ratios of the higher order differentials, i.e. q = dp

dx , r = dq
dx

etc. But whenever this happens, the equation (A) = 0 will be a differential
equation of first or higher order; and hence the relation among x and y in
question is just found after one or more integrations. But since each integration
introduces an arbitrary constant, this way one will get to a vague finite
equation and now there is a new question, how these arbitrary constants must
be determined for the value of U to result as a maximum or minimum. For,
since each determination of those constants already enjoys the property of the
maximum or minimum, here we still have an investigation of the maximum
of all maxima or minimum of all minima left.

§70 Therefore, to solve this new problem, one can use those parts not affected
by the integral sign. Of course, the constants introduced by integration have
to be determined in such a way that for x = a the coefficients of δy, dδy

dx , ddδy
dx2

etc. all vanish, or that in this case these conditions are fulfilled:

(B) = 0, (C) = 0, (D) = 0 etc.

Further, since both limits x = 0 and x = a can be permuted, also for x = 0 it
has to be (B) = 0, (C) = 0, (D) = 0 etc. For, even though the parts enforcing
this are not contained in our expression, they are nevertheless to be considered
to be contained in the integral term.
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§71 From the same principles one can even solve problems which I referred
to the relative method in my book; indeed these problems can be formulated
in general as follows:

Among all relations by which x and y are defined and which enjoy the common
property that for the formula U for x = a they exhibit the same value, to determine
the relation, from which the formula U, if it is extended from x = 0 to x = a, has the
maximum or minimum value.

Therefore, here the variations attributed to each value of y are not arbitrary
but are to be constituted in such a way that δU, if its value is extended from
x = 0 to x = a. But then the nature of maxima and minima also demands that
for the same extension (from x = 0 to x = a) as before we have δU = 0.

§72 Therefore, by the method explained before find the variation to be
extended from x = 0 to x = a so of the formula U, which must be in common,
as of the formula U, which must become a maximum or a minimum; and the
relation among x and y in question is to be investigated from the combination
of the two equations δU = 0 and δU = 0. But these variations will be found
expressed this way:

δU =
∫
(A)dxδy + (B)δy + (C)

dδy
dx

+ (D)
ddδy
dx2 + etc.,

δU =
∫
(A)dxδy + (B)δy + (C)

dδy
dx

+ (D)
ddδy
dx2 + etc.,

where for the terms without an integral sign the same things are to be re-
marked as above; and hence one has to derive the relation among x and y in
question only from the integral terms.

§73 Hence we will obtain the following two equations:

(A)δy + (A)′δy′ + (A)′′δy′′ + (A)′′′δy′′′ + etc. = 0,

(A)δy + (A)′δy′ + (A)′′δy′′ + (A)′′′δy′′′ + etc. = 0,

in the first of which equations the assumption of the variations δy, δy′, δy′′ etc.
corresponding to the prescribed condition is defined, which is then introduced
into the other will manifest the relation in question. Therefore, all variations
δy, δy′, δy′′ etc. except for one can be considered as arbitrary, which one single
non-arbitrary variation is to be defined from the first equation. Now it is
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already evident, after one had already been assumed in such a way that the
first equation is satisfied, that then the other is also satisfied at the same time,
if one puts (A) = n(A), taking an arbitrary constant for n.

§74 Therefore, the propounded problem is resolved by this equation:

α(A) + β(A) = 0,

having taken arbitrary constants for α and β. But the same solution would
have resulted, if among all relations among x and y one had to find that one,
whence the formula αU + βU would have the maximum or minimum value;
from this it is at the same time understood that the two propounded formulas
U and U can be permuted and all the results I mentioned in my book hence
become a lot more perspicuous. For, matters will be similar, if not only one
formula U but several ones must be in common; and hence, having constituted
the foundations of the calculus of variations, all problems of this kind will be
solved most easily and quickly.

38


